您的位置: 旅游网 > 明星

人脸识别技术原理及市场应用前景分析

发布时间:2019-08-15 18:42:46

  人脸识别技术是基于人的脸部特征,对输入的人脸图象或者视频流.首先判断其是否存在人脸,如果存在人脸,则进一步的给出每个脸的位置、大小和各个主要面部器官的位置信息。并依据这些信息,进一步提取每个人脸中所蕴涵的身份特征,并将其与已知的人脸进行对比,从而识别每个人脸的身份。

  人脸识别技术原理分析

  人脸由于其易采集的特性,受到很多行业客户的关注,特别是公安、海关、商场等。人类每天都在进行人脸识别,因此也最能接受这种身份认证方式。人脸识别的研究始于上世纪中期,经历了数十年的努力,现在已经可以应用在我们的实际生活中,为我们提供各种便利。

  人脸识别主要分为人脸检测(facedetection)、特征提取(featureextraction)和人脸识别(facerecognition)三个过程.

  人脸检测:人脸检测是指从输入图像中检测并提取人脸图像,通常采用haar特征和Adaboost算法训练级联分类器对图像中的每一块进行分类。如果某一矩形区域通过了级联分类器,则被判别为人脸图像。

  特征提取:特征提取是指通过一些数字来表征人脸信息,这些数字就是我们要提取的特征。常见的人脸特征分为两类,一类是几何特征,另一类是表征特征。几何特征是指眼睛、鼻子和嘴等面部特征之间的几何关系,如距离、面积和角度等。由于算法利用了一些直观的特征,计算量小。不过,由于其所需的特征点不能精确选择,限制了它的应用范围。另外,当光照变化、人脸有外物遮挡、面部表情变化时,特征变化较大。所以说,这类算法只适合于人脸图像的粗略识别,无法在实际中应用。

  表征特征利用人脸图像的灰度信息,通过一些算法提取全局或局部特征。其中比较常用的特征提取算法是LBP算法。LBP方法首先将图像分成若干区域,在每个区域的像素640x960邻域中用中心值作阈值化,将结果看成是二进制数。图 显示了一个LBP算子。LBP算子的特点是对单调灰度变化保持不变。每个区域通过这样的运算得到一组直方图,然后将所有的直方图连起来组成一个大的直方图并进行直方图匹配计算进行分类。

  人脸识别:这里提到的人脸识别是狭义的人脸识别,即将待识别人脸所提取的特征与数据库中人脸的特征进行对比,根据相似度判别分类。而人脸识别又可以分为两个大类:一类是确认,这是人脸图像与数据库中已存的该人图像比对的过程,回答你是不是你的问题;另一类是辨认,这是人脸图像与数据库中已存的所有图像匹配的过程,回答你是谁的问题。显然,人脸辨认要比人脸确认困难,因为辨认需要进行海量数据的匹配。常用的分类器有最近邻分类器、支持向量机等。

  与指纹应用方式类似,人脸识别技术目前比较成熟的也是考勤机。因为在考勤系统中,用户是主动配合的,可以在特定的环境下获取符合要求的人脸。这就为人脸识别提供了良好的输入源,往往可以得到满意的结果。但是在一些公共场所安装的探头,由于光线、角度问题,得到的人脸图像很难比对成功。这也是未来人脸识别技术发展必须要解决的难题之一。

信用场景
2018年台湾旅游上市后企业
2012年佛山生鲜食品B轮企业
猜你会喜欢的
猜你会喜欢的